CBSE 12th Mathematics Chapter 1 (Relations and functions) Important Questions Unsolved

SECTION - A

Question number 1 to 13 carry 1 mark each.

- Q.1: If a*b denotes the larger of 'a' and 'b and if a o b = (a*b) + 3, then write the value of (5) o (10), where * and o are binary operations.
- Q.2: Let * be a binary operation defined by a * b = 2a + b 3. Find 3 * 4.
- Q.3: Let * be a binary operation on N given by $a * b = HCF(a, b) a, b \in N$. Write the value of 22 * 4.
- Q.4: If: $R \to R$ be defined by $f(x) = (3 x^3)^{1/3}$, then find f of (x).
- Q.5: Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether f is one-one or not.
- Q.6: The binary operation *: $R \times R \rightarrow R$, is defined as a*b = 2a + b. find (2*3)*4.
- Q.7: If $(R) = \{(x, y): x + 2y = 8\}$ is a relation on N, write the range of R.
- Q. 8: If f(x) = x + 7 and g(x) = x 7, $x \in R$, find (fog) (7).
- Q.9: If binary operation * on the set of integers Z, is defined by $a * b = a + 3b^2$, then find the value 2 * 4.
- Q. 10: What is the range of the function:

$$f(x)=\frac{|x-1|}{(x-1)}?$$

Q.11: State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ not to be transitive.

- Q.12: Let * be a 'binary' operation on N given by $a * b = LCM(a, b) \forall a, b \in N$.
- Q.13: Let * be a binary operation, on the set of all non-zero real number, given by $a*b = \frac{ab}{5} \ for \ a,b \in R \{0\}.$

Find the value of x, given that 2 * (x * 5) = 10.

SECTION - B

Question number 14 to 31 carry 4 mark each.

- Q.14: Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that g of $= f \circ g = I_R$.
- Q.15: A binary operation * on the set $\{0, 1, 2, 3, 4, 5\}$ is defined as $a * b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$

Show that zero is the identify for this operation and each element a of the set is invertible with a being the inverse of a.

Q. 16: (i) Is The binary operation *, defined on set N, given by

 $a * b = \frac{a+b}{2}$ for all $a, b \in Q$, commutative? (ii) is the above binary operation * associative?

Q. 17: Prove that the relation R in the set

 $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b): |a - b| \text{ is even}\}$, is an equivalence relation.

Q.18: Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a,b): a,b \in Z \text{ and } (a-b) \text{ is divisible by 5.} \}$ Prove that R is an equivalence relation.

- Q.19: Consider the binary operation * on the set $\{1, 2, 3, 4, 5\}$ defined by $a * b = \min\{a, b\}$. Write the operation table of the operation *.
- Q.20: Let A = IR {3} and B = IR {1}. Consider the function $fA \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. show that f is one one and onto and hence find f^{-1}
- Q. 21: Let $A = \{1, 2, 3,, \}$ and R be the relation in A \times A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A \times A. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)].
- Q. 22: Show that the function f in $A = R \left\{\frac{2}{3}\right\}$ Defined as $f(x) = \frac{4x+3}{6x-4}$ is one one and onto hence find f^{-1} .
- Q.23: Show that the relation R defined by (a, b) R $(c, d) \Rightarrow a + d = b + c$ on the set N x N is an equivalence relation.
- Q.24: Let $f: N \to N$ be defined by

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$
 for all $n \in \mathbb{N}$.

Find whether the function f is bijective.

- Q.25: Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $S = \{(a, b) : a, b \in Z, |a b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1.
- Q.26: Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $g \circ f = f \circ g = I_R$.
- Q.27: A binary operation * on the set {0, 1, 2, 3, 4, 5} is defined as

$$a*b = \begin{cases} a+b, & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

Show that zero is the identity for this operation and each element 'a' of the set is invertible with 6-a, being the inverse of 'a'.

Q.28: Show that $f: N \to N$, given by,

$$f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$$
 is both one – one and onto.

- Q.29: Consider the binary operations*: $R \times R \rightarrow R$ defined as a * b = |a b| and a o b = a for all a, b ϵ R. show that '*' is commutative but not associative 'o' is associative but not commutative.
- Q.30: Consider $f: R_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of given by $f^{-1}(y) = \sqrt{y-4}$ where R_+ is the set of all non negative real numbers.
- Q.31: If the function $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \to R$ be given by $g(x) = \frac{x}{x-1}, x \neq 1,$

find fog and gof and hence find fog(2) and gof(-3).

SECTION - C

Question number 32 to 42 carry 6 mark each.

Q.32: Consider $f: \mathbb{R} \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$.

Show that f is invertible with $f^{-1}(y) = \left(\sqrt{\frac{y+6-1}{3}}\right)$

Hence Find

(i)
$$f^{-1}(y)$$

(ii)
$$y \ if \ f^{-1}(y) = \frac{4}{3}$$
,

Where R+ is the set of all non-negative real numbers.

- Q.33: Discuss the commutativity and associativity of binary operation '*' defined on $A = Q \{1\}$ by the rule a * b = a b + ab for all $a, b \in A$. Also find the identity element of * in A and hence find the invertible elements of A.
- Q.34: Let N denote the set of all natural numbers and R be the relation on N x N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.

Q.35: Let $f: N \to N$ be a function defined as $f(x) = 9x^2 + 6x - 5$.

Show that $f: N \to S$,

Where S is the range of f, is invertible. Find the inverse of f and hence find $f^1(43)$ and $f^1(163)$

- Q.36: Let $A = \{x \in Z : 0 \le x \le 12\}$. Show that $R = \{(a, b) : a, b \subset A, |a b| \text{ is divisible by } 4\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class[2].
- Q.37: Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{x}{x^2 + 1}$$
, $\forall x \in \mathbb{R}$ neither one — one nor onto.

Also, if $g: \mathbb{R} \to \mathbb{R}$ is defined as g(x) = 2x - 1, find fog(x).

Q.38: Consider $f: \mathbb{R} - \frac{4}{3} \to \mathbb{R} - \left\{\frac{4}{3}\right\}$ given by

$$f(x) = \frac{4x+3}{3x+4}$$
 Show that f is bijective.

Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x) = 2$.

- Q.39: Let $A = Q \times Q$ and let * be a binary operation on A defined by (a,b)*(c,d) = (ac,b+ad) for $(a,b),(c,d) \in A$. Determine, whether * is commutative and associative. Then, with respect to * on A
 - (i) Find the identity element in A.
 - (ii) Find the invertible elements of A.
- Q.40: Consider $f: \mathbb{R}_+^{\rightarrow}[-9\infty]$ give by $f(x)5x^2 + 6x 9$. Prove that f is invertible with:

$$f^{-1}(y) = \left(\frac{\sqrt{54+5y}-3}{5}\right)$$

Q.41: A binary operation * is defined on the set

 $X = R - \{-1\}$ by x * y = x + y + xy, $\forall x, y \in X$. Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X.

Q.42: Show that the binary operation * on A = R - $\{-1\}$ defined as a * b = a + b + ab for all a, b, ε A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.